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The transition from locked to leaky modes in tropospheric 
radio propagation 
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Cavendish Laboratory, University of Cambridge, Cambridge CB2 3RQ, UK 

MS received 14 August 1972 

Abstract. The propagation characteristics of a waveguide mode in the troposphere near the 
ground are studied by the simple phase integral method over a range of frequencies in which 
the mode changes from locked to leaky. The method is applied to a troposphere with a 
parabolic distribution for the square of the modified refractive index, and the results are 
compared with those from an exact analytic method. Particular attention is given to the 
contour of the phase integral in the complex height plane. This contour changes discon- 
tinuously at the transition from a locked to a leaky mode. An alternative phase integral 
formula is described in which there is no abrupt change at the transition. Some results from 
this formula are presented, and a derivation of it for locked modes is given. 

1. Introduction 

The phase integral method (Eckersley 1931, 1932a, b, c, Booker and Walkinshaw 1946, 
Heading 1962) can be used for solving many problems in radio propagation in a hori- 
zontally stratified system such as the ionosphere or troposphere. One of its simplest 
applications is for finding the reflection coefficient R for radio waves normally incident 
on an isotropic slowly varying ionosphere with a simple electron distribution N ( z )  
having just one maximum. Another application is to the study of waveguide modes in 
the troposphere near the ground when the atmosphere has a temperature inversion so 
that locked modes are possible. These two examples share certain features which are 
studied in this paper. 

In the first example, the reflection coefficient R of the ionosphere is given by the 
approximate phase integral formula 

R N i exp( -2ik jrl p dz) 

(Budden 1961) where p(z) is the refractive index, and zol is the lower of the two real 
levels zol ,  zo2 where p ( z )  is zero. For a frequency f which is less than the penetration 
frequencyf, of the ionosphere, lR( is unity if the ionosphere is loss free. Above the reflec- 
tion level there is a region zol < z < z o 2 ,  similar to a ‘potential barrier’ in wave 
mechanics, where the wave is evanescent. At still greater heights z > zo2 a propagated 
wave, the transmitted wave, is again possible, but if the barrier is thick the transmission 
coefficient is negligible. For frequencies greater thanf, these levels zol ,  zo2 are complex 
conjugates and zol is chosen such that Im (zol)  is negative. There is no barrier and the 
reflection coefficient is very small. For a range of frequencies near f, the formula (1) 
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fails in a loss-free ionosphere. If the electron collision frequency v is allowed for, how- 
ever, this range of failure is reduced and if v is sufficiently large there is no serious failure. 
There is then a continuous transition from strong reflection forf < f, to weak reflection 
and strong penetration forf > f,. A s f  increases from small to large values the point 
zo moves along a continuous curve in the complex z plane. 

In the second example, for a tropospheric duct, a locked mode is possible if the 
frequency is great enough. For this mode the troposphere is then a perfect reflector. 
Here only the mode of lowest order, the first order mode, is studied but similar con- 
siderations apply to the other modes. The ground is always assumed to be a perfect 
conductor. Above the reflection level in the troposphere there is a barrier region 
similar to that in the first example. If the frequency is reduced, the reflection level gets 
higher and the barrier becomes thinner. If it is thin enough, there is some penetration 
and the mode becomes slightly leaky. The simplest form of the phase integral formula, 
(18) below, ignores this leakage. It predicts that the mode is ‘well locked’ provided that 
f is greater than a transition frequency fT. The error is not serious when f >> f, but 
may be intolerable iffis close tOfT. For frequencies less thanf, the mode is leaky, and if 
f i s  sufficiently small the phase integral method can again be used with good accuracy. 
The method uses a point zo in the complex z plane where the variable q(z), (5) below, 
is zero. This zo fills the same role as the zol in the first example. 

Loss of energy from a mode through leakage is, in some respects, similar to loss of 
energy from a vertically incident wave through electron collisions in the ionosphere. 
It might be expected, therefore, that the transitions in these two examples, f decreasing 
throughf, and fincreasing throughf, respectively, are similar. In fact they are different. 
The purpose of this paper is to study the transition from a locked to a leaky mode as f 
decreases throughf,. It is shown that the zo used in the phase integral method does not 
lie on a continuous curve as f is varied, but on two different curves, one for f >> f T  
and the other f << f T  . The jump occurs in the transition range f N f T  where the simple 
phase integral formula must inevitably fail. 

This paper is therefore aimed at understanding the basic wave propagation processes 
of the transition. It is not concerned with actual tropospheric models. A simple modi- 
fied refractive index distribution, p ( z )  in (2) below, has been chosen for which the exact 
solution of the wave equation is known, and this allows the validity of the phase integral 
formula to be tested. For actual distributions p(z), where there is no known exact 
solution, either some approximation must be used, or a full numerical solution. The 
phase integral method is a quick and simple approximate method, and it is therefore 
important to know the extent of its validity. 

2, Notation 

A Cartesian coordinate system, axes x, y ,  z is used, with the z axis directed vertically 
upwards, and the x-z plane is defined to be the plane containing the wave normal. 
The troposphere is assumed to be horizontally stratified so that the modified refractive 
index p is a function only of z .  The principal symbols used are as follows. 

9 angle between the wave normal and the vertical at  a level where the refractive 
index is unity. 

p modified refractive index. 
w angular frequency. 
c cose. 
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c 

k w/c. 
n mode number. 
S sin 0. 
Other symbols are explained in the text as they are used. The amplitude of the waves 

velocity of electromagnetic waves in free space. 
f w/271. 

depends upon time t through a factor exp(iwt), which is omitted throughout. 

3. Statement of the problem 

On the average the refractive index of the atmosphere decreases as z increases. Some- 
times, for example when there is a temperature inversion (Appleton 1946), the rate of 
decrease can be so great that there is a duct in which well locked waveguide modes can 
propagate if the frequency is great enough. In the theory of this type of propagation, 
the earth’s curvature can be allowed for by using a modified expression for the refractive 
index function (Booker and Walkinshaw 1946, Pekeris 1946) which then permits the 
assumption that the earth is flat. It is required to study the simplest problem ofthis kind. 
I t  is therefore assumed that the earth’s surface is flat and perfectly conducting, and that 
the modified refractive index p(z) is given by 

W))’ = 1 +P{(Z-zmI2 -2:) ( 2 )  
where P is a real constant and z, is a real height. This has a minimum value at z = z, 
and there can be a duct at  heights below this. Solutions are sought in which the electric 
intensity of the wave is horizontal (parallel to the y axis) and given by 

E(z) exp( - ikSx). (3) 
Then E must satisfy 

d2E 
dz2 
---+k’q2E = 0 

where 
q 2  = p2 - s2 

= C2+j3{(z-zm)’-z,, 2 1  

and 
e2 = 1-s2. 

(4) 

Further, E must satisfy the boundary condition at the perfectly conducting ground, 
namely 

E(0) = 0. (7) 
At great heights the solution must represent an outgoing wave, that is one in which the 

z component of the Poynting vector is positive. Solutions for E which satisfy these 
boundary conditions are only possible for discrete eigenvalues of S, each of which is 
associated with one waveguide mode. Here we study only the least attenuated mode, 
that is the one for which IIm(S)l is least. 

Equation (4) can be solved exactly in terms of the parabolic cylinder functions 
(Whittaker and Watson 1935). It can be shown (Budden 1961) that the required solution 
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is the Weber function 

where 

5 = (4k2p)1'4(z- z,) exp(+in) (9) 
and 

v + )  = k2(C2-P~i)(4k2/?)-1/2 exp(-$in) (10) 
and where the real positive values of the fractional powers are used. When z = 0 , t  = to 
such that 

to = - ~,(4k'p) ' /~ exp(+ix). (1 1) 
The values of p, k and z, used later in this paper are such that 1t01 is sufficiently 

large for only the first two terms in the asymptotic series approximation (Whittaker and 
Watson 1935 Q 16.52) for (8) to be used. The boundary condition (7) then becomes 

The fractional complex power t;"' is defined as follows. Equation (11) is rewritten as 

to = ~ ~ ( 4 k ~ p ) " ~  exp(5in) (13) 

In to = In z, + $ ln(4k2P) +$in (14) 

exp((2v + 1) In to}. (15) g v + 1  = 

so that 

and 

Now (14) and (15) define (2"' unambiguously. 
Equation (12), with (10) and (1 l), is an equation for finding the eigenvalue C. I t  was 

checked in a few cases by comparison with a numerical stepwise integration of (4) as 
used, for example, by Hartree et al(1946), and its accuracy was found to be very good 
for the frequencies studied in this paper. When C is known, the value zo of z which makes 
q = 0 is given from (5) by 

c2 1/2 

zo = z,*(z:-T) . (16) 

The two values of zo obtained by this method will be denoted by zby) and zh;) where 
w indicates that the Weber function solution (8) has been used, and 

Re(zb",) < Re(z&)). (17) 
The same problem can be solved approximately by the phase integral method. 

By analogy with (l), the reflection coefficient of the troposphere, as observed at the 
ground, for obliquely incident waves is given by 

R N i exp( -2ik Jr q dr)  

where q(z) is given by (5) and is chosen so that Re(q) > 0. The boundary condition (7) 
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requires that R = - 1. These formulae were used by Booker and Walkinshaw (1946) 
who showed (Booker and Walkinshaw 1946 equation (37)) that the resulting equation 
for finding the eigenvalue C is 

together with (16), where n is a positive integer. It is important to choose the correct 
alternative of the two values (16). These values will be denoted by zpl and zpi where p 
indicates that the approximate phase integral method has been used, and 

Re(zbp]) < Re(zp4). (20) 
The discussion of the solutions of (19) and of the criterion for choosing zo in (16) is the 
main purpose of the present paper. 

An alternative and more accurate form of (18) has been suggested for frequencies 
near f T  (S Rotheram private communication), namely 

R N i exp( -2ik jy '  q dz) { 1 +exp( +2ik l:: q dz)]  - '. 
A derivation of this formula is given for slightly leaky modes in 0 7 .  If (21) is used with 
(7)  and (16), it gives yet another pair of values of z,,, which will be written zb$) and zb$) 
where A indicates that the alternative formula (21) has been used. 

Iff  >> f T ,  that is for well locked modes, the last exponential term in (21) is very small. 
If it is neglected, (21) and (18) are the same, provided that zo l  is used for the z,, in (18). 

Now (21) can also be written thus : 

R rr i exp( -2ik q d i )  {I +exp[ -2ik l::: q dz)]-'. (22) 

For f 'v f T  the modulus of the last exponential term in (22) is approximately unity. 
Asfdecreases, this term decreases. If it is neglected then (22) is the same as (18), provided 
that zO2  is used for the zo in (18). The exponential term does not, however, tend to zero 
as f goes to zero. For the examples considered it has a minimum value of about 0.1 
a t f  'v 9 MHz, and it then increases asfdecreases further. Nevertheless, for frequencies 
in the transition region (22) tends to (18) with zo2 used for zo, asf is  reduced. There is an 
appreciable range of frequenciesf << f T  for which (22) is approximately the same as (18). 

This change, from the use of z o l  in the simple phase integral formula (19) for well 
locked modes, to the use of zo2 for leaky modes, is shown to be necessary, in 0 5, and is 
one of the main results of this paper. 

4. Locked modes 

Solutions will now be studied for modes of the smallest order n = 1, so that (19) becomes 

3 c  J:o q dz = - -. 
8 f  

In any mode the electromagnetic field near the ground may be considered as com- 
posed of two crossing waves, one travelling obliquely upwards and the other obliquely 
downwards. One is converted into the other by reflection at  the ground and again at  
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the level z = zp] where q = 0. Equation (23) is the condition that after two reflections 
the original wave is again produced, as required for a self-consistent mode. For locked 
modes, the reflection level zbp) is real so that, from (16) C2 is real and less than pz;. 
It is clear that the reflection level must be the smaller, z p ) ,  of the two values (16). This is 
confirmed when the more accurate condition (12) is used. When the square root in (16) 
is small the two values of zo are close together. Between them is the barrier mentioned 
in 8 1, and since this barrier is thin, some energy can leak through it. This possibility, 
however, is ignored when (23) is used and this equation predicts locked modes provided 
that 

(24) 
c2 
- < z,. 
/I 

z(P) - (P) - 

For the equality sign in (24), we have from (16) and (23) 

( 2 5 )  f = f  - 3  - 1 / 2  - 2  
T - 4cP zm 01 - 2 0 2  - zln, 

where fT is the transition frequency mentioned in 9 1. The positions of the points (20) 
in the complex z plane, as given by solving (23) and (1 6) for various frequencies f > f T ,  
are shown in figure 1. Also shown are the more accurate values zb?), zb;) given by using 

Figure 1. The complex z plane showing the loci of the points zo where q = 0. The curves 
z c ) ,  z 8  were obtained from the Weber function solution (8), z # ,  were obtained from the 
approximation (19) of the phase integral method, and zit), zb:) were obtained from the alter- 
native formula (21). The numbers by the points show the frequency in MHz. In this example 
z ,  = 0.5 km, = 4 x km-', the transition frequency& is 45.0 MHz and the tropo- 
sphere is loss free. The dotted line shows 'negative order mode' solutions, obtained when 
z" is used for zo in (19) whenf < fT. 

(21) instead of (l8), and the values (37 )  found from (12) and (16). It is seen that the agree- 
ment ofall three methods is good whenfis large, but as fdecreases the positive imaginary 
part of both .LA) and z" increases. The associated values of C and S are complex, so that, 
from (3), the mode is attenuated as it travels in the horizontal x direction. The simple 
phase integral method, however, gives a real value providedf > f T ,  and there would 
then be no attenuation. 
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Figure 1 shows that the alternative form (21) of the phase integral formula gives 
results which are more accurate than for the simple form (18), but the accuracy is still 
poor whenfis close tOfT. 

Figure 2 shows the positions of the eigenvalues C, in the complex C plane, for various 
frequencies f, obtained from all three methods. It is seen that the agreement of all 
the methods is good whenfis large but asfdecreases the positive imaginary part of C, 
found from the alternative phase integral formula (21) and from (12), increases steadily. 
The simple phase integral method, however, gives a real value for C for all frequencies 
f > f T .  

Figure 2. The complex C plane showing the loci of the eigenvalues of C satisfying the 
boundary conditions for the least attenuated mode. Curve C, was obtained from the Weber 
function solution (S), curve C, was from the approximation (19) of the phase integral method 
and curve C, was obtained from the alternative formula (21). The numbers by the points 
show the frequency in MHz. The values of z,, p and f, are the same as in figure 1 and the 
troposphere is again loss free. 

5. Leaky modes 

Suppose now that the frequency is decreased so that f < fT .  The resulting values zdy) 
and z&) are shown in figure 1, and it is seen that they lie on the same continuous curves as 
for f > fT. The same applies to the pair zbj), zb:) which are also shown. As fdecreases, 
the imaginary part of zb$, and of zb;)), continues to increase, and the associated value of S 
has an increasing negative imaginary part which shows that the attenuation of the mode 
through leakage increases as f decreases. The transition from locked to leaky modes is 
therefore gradual and continuous. 

Now consider the solution when f < fT of equations (16) and (23) which use the 
simple phase integral formula (18). For zo in (23), either zbp] or zbpj may be chosen. It is 
found that if zp] , with the smaller real part, is consistently chosen, no value of S satisfying 
(23) can be found. If that zo with the positive imaginary part is consistently used, then an 
iterative solution of(l6) and (23) gives the zo which also has the greater real part. Further- 
more, if this zo is used, the resulting value of S has a positive imaginary part so that the 
amplitude of the field in the mode would increase as it travelled. Thus the mode would 
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be of ‘negative order’ and could not be excited by any source (Wait 1957). It is therefore 
necessary to choose that zo  with negative imaginary part. The resulting value of S then 
makes this z o  also have the larger real part so that it must be labelled zbpi. The cor- 
responding values of z p ]  and are shown in figure 1. They lie on the continuous lines 
through z,. Whenfis small enough, the agreement between the points zpj ,  z&) and z&) 
is good (near Q in figure 1). 

Figure 2 shows the eigenvalues C in the complex C plane for frequencies f < fT 

obtained from all three methods. The curves from the alternative phase integral formula 
(21) and from (12) continue smoothly from the corresponding curves for frequencies 
f > fT. The curves from the simple phase integral formula, however, show a sharp 
discontinuity of gradient at f = fT. 

According to the simple phase integral method, therefore, the transition from locked 
to leaky modes is abrupt and occurs whenfdecreases and passes throughf,. The point zo 
used in ( 2 3 )  moves along a continuous line formed by the two lines O P  and P Q  in figure 1. 
There is no attenuation when f > fT. For f < fT the attenuation increases as f de- 
creases. For frequencies near fT, however, the accuracy is very poor. For frequencies 
less than fT, that is for leaky modes, the value of z o  in (16) with the negative imaginary 
part must be used in (23). This is also the value with the greater real part. 

For the alternative phase integral formula (21) or (22) the transition from locked to 
leaky modes is continuous. It is convenient, however, to use the form in which the 
exponential term in the correction factor in curly brackets has modulus less than unity. 
This means using (21) for locked modes, and (22) for leaky modes. If the correction factor 
is neglected there is again an abrupt change from the use of zol for locked modes to zo2 
for leaky modes. The latter point has the greater real part. In the ionospheric problem of 
9 1, by contrast, the value of zo  used in the phase integral method is never the one with 
the larger real part. 

If losses due to electron collisions in the ionospheric plasma are allowed for, and if 
they are sufficiently great, the accuracy of the phase integral method is good for all 
frequencies including those near f , .  In the tropospheric duct problem, the medium is 
loss free. Leakage does not have the same effect as losses in the medium and there is 
always a failure of the phase integral method whenfis near f,. I t  is interesting to ask if 
losses in the tropospheric medium would reduce the range off in which the phase integral 
method fails. This question is now examined. 

6 .  Effect of losses in the medium 

It is now supposed that the modified refractive index ,D in the troposphere has a negative 
imaginary part, so that (1) is replaced by 

(,D(4)2 = 11 +Pi(. - z,)2 - z31(1 - iy) (26) 

where y is a real positive constant. Since /3z i  is very small, of the order of l o w 4  in the 
example considered here, Im(p) is negative when z is real. This expression thus takes 
account of absorption of electromagnetic energy in the medium. Whilst this would 
rarely be important in the actual troposphere, it is possible for ducted propagation 
to occur in the ionosphere where there is a trough in the electron distribution N ( z )  
(Chang 1971a, b) and the losses in this medium could be important. Here, however, 
it is supposed That the lower reflector is still a perfectly conducting plane, so that the 
results can be compared with the loss free case studied in earlier sections. It is further 
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assumed that the medium is nondispersive so that (26) is independent of frequency. 
This simplification would not apply to an ionospheric duct. 

Figure 3 shows the loci of the points zb?), zb;) and zbf)’, zh;) for two values of the loss 
parameter y in (26). They do not change in form as y is increased but the two branches 
merely separate from each other. Also shown are the loci of zp), zbpj from (23) for the 
same values of y .  The point zhp] was used for zo in (23) when the exponential term in the 
correction factor in curly brackets in (21) had modulus less than unity, and zpj  was used 
for zo when this term in (21) had modulus greater than unity. 

Figure 3. The complex z plane showing the loci of the points zo where q = 0, for two different 
values of g. The continuous curves are for g = 0.01; the dotted curves are for g = 0.1. 
The remaining labelling is the same as in figure 1 and the values of z, ,  andf, are also the 
same as in figure 1, with which this figure should be compared. 

The positions of the branch points are much less sensitive to changes in y than are the 
eigenvalues C. Furthermore the frequency range around fT, where the simple phase 
integral approximation is poor, is reduced only very slightly. It is concluded that the 
effect of losses in the medium does not appreciably change the range or extent of failure 
of the phase integral method. In order to make the approximation good for all frequ- 
encies, the losses would have to be so large as to make the eigenvalues C wildly un- 
realistic. Again this contrasts with the ionospheric example, where moderate and 
realistic losses make the phase integral approximation good for all frequencies aroundf, . 

7. Discussion 

This section attempts to explain why, when using the phase integral method, it is neces- 
sary to change from using zbp] (nearer to the ground) for well locked modes whenf >> fT ,  

to using (further from the ground) for leaky modes whenf .<( fT. 
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Consider first the case of a well locked mode travelling in the direction of x increasing. 
The electric field E of the least attenuated mode, in the plane x = 0 is now to be studied. 
The complex z plane for this case is shown in figure 4, and the points zol, zo2  are branch 
points of q(z)  from (5). The branch cuts are the lines Re(q) = 0 and they do not cross the 
real z axis. In the following formulae the value of q with positive real part is used. 

Figure 4. The complex z plane showing the branch points zg) ,  zg) for a well locked mode 
obtained from the Weber function solution (8). The branch cuts are where Re(q) = 0. 
The lines marked S and A are Stokes and anti-Stokes lines respectively. 

In the duct there is an obliquely upgoing wave, labelled D(0) in figure 5, whose electric 
field at  the ground, x = 0, z = 0, is E,. It is reflected near the level zol to produce an 
obliquely downgoing wave D(1) whose electric field at the ground is E , .  The reflection 
coefficient R ,  which would be measured by an observer at z = 0 is given by the phase 

-___ Ground 

Figure 5. A schematic diagram for a mode which is only slightly leaky. It shows the up- 
going and downgoing waves in the barrier region, and the resulting downgoing waves in the 
duct and leakage waves above the barrier. 
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integral formula (18) so that 

- El = R ,  N iexp( -2ikJ:'qd.z). 
EO 

This result is reliable only if the reflection near zol is not influenced by the other 
branch point z o 2 .  This is achieved when the region between zol and zo2  is great enough. 
This region is the barrier which prevents appreciable leakage. According to (18) or (27) 
zol is then purely real and the wave within the barrier contains a factor exp( +ikJ" q dz) 
where q is positive imaginary. There is only one wave there, and this has its average 
Poynting vector horizontal and its amplitude decreases rapidly as z increases. It was 
shown in 0 4, however, that a more accurate treatment, using either the alternative 
formula (21) or the analytic solution (8), shows that zol has a positive imaginary part 
because the upper branch point for z O 2  always has a small influence. If we use either 
zb*J or z" but continue to suppose that there is only one wave in the barrier, with a 
factor exp( +ikJ' q dz), then the q for this wave must still have a large positive imaginary 
part and it can be shown from (5) that it now has a small positive real part. This wave 
is called B(l), and it still decreases in amplitude as z increases but the time average of the 
Poynting vector now has a small negative z component. This leads to the rather sur- 
prising result that energy is coming obliquely down in the barrier region towards the 
main reflecting region near zol. As we proceed downwards on the real z axis the q 
for this downgoing wave B(l) goes over continuously into the q for the reflected wave D(1) 
in the duct, whose electric field at the ground is E ,  in (27). Thus for a point z in the 
barrier, the electric field of the have B( 1) is : 

[ ~ ) 1 ' 2 E ,  exp( +ik J: q dz) 

where the q with a positive real part is chosen and the path of integration is the real z 
axis. The factor (C/q)l i2 arises from the factor q-- l i 2  in the WKB approximate solution 
of (4). I t  is used later only where z = 0, and q = + C so that it is then unity. The same 
formula (28) is also used later for other pairs of downgoing waves D(2n + 1) in the duct 
and B(2n+ 1) in the barrier, where n is an integer. The approximate formula (27) there- 
fore expresses the idea that there are two incident waves approaching the region near z o l ,  
namely D(0) in the duct and B(l) in the barrier region. Their relative amplitudes and 
phases are such that there is no emergent upgoing wave in the barrier and that in the duct 
there is only the downgoing wave D( 1). 

To explain the leakage there must clearly be at  least one upgoing wave in the barrier 
region. We suppose that there is such an upgoing wave B(2). Since this is not produced 
from B(l) and D(0)  there must be another downgoing wave, called B(3), in the barrier. 
This wave approaches the region near zo  and is partially reflected to give the upgoing 
wave B(2) and partially transmitted to give a wave D(3)  travelling down in the duct. 
It is the upgoing wave B(2) which is partially reflected near zo2 to give B( l), and partialiy 
transmitted to give an upgoing wave 142) above zo2  which contributes to the leakage. 
Similarly, the downgoing wave B(3) is produced by partial reflection near zo2 of an up- 
going wave B(4) which is also partially transmitted to give a leaking wave L(4). This 
process is now continued indefinitely. There is an infinite sequence of upgoing and down- 
going waves in the barrier and they give rise to a sequence D(1), D(3),  D(S),  . . . of down- 
going waves in the duct. This idea is illustrated schematically in figure 5. 
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The amplitude of the upgoing wave B(2) increases as it travels obliquely upwards 
in the barrier region. This is because the Poynting vector is almost horizontal so that the 
wave has come up obliquely from a point where x is large and negative. Since the mode is 
slightly attenuated its amplitude at this distant negative x is very large. When this wave 
reaches the region near zO2 it is partially reflected to give the downgoing wave B(1) and 
partially transmitted to give leakage of energy from the mode, wave L(2) in figure 5. 

The reflection coefficient for the conversion of wave B(2n) into wave B(2n- 1) by 
downward reflection near zO2 is given by the phase integral formula : 

R ,  N i exp( -2ik lo' q dz). 

The lower limit z is the coordinate of the point of observation, where Re(z) < Re(z,,). 
Both real and imaginary parts of q are positive so that the modulus of (29) is very large 
and much greater than unity. This is because the amplitudes of the incident and reflected 
waves are measured at the same point and the waves are inhomogeneous (Stratton 
1941) so that this point is on different lines of energy flux for the two waves. The result 
(29) is used later to find the small amplitude of the incident wave B(2n) that would have 
produced a reflected wave B(2n- 1) whose amplitude is large and known. 

Similarly the downgoing wave B(2n + 1) produces some upgoing wave B(2n) by 
reflection near zol. The reflection coefficient is similar to (29), namely : 

R ,  N i enp( +2ik j:' q dz) 

This also has modulus greater than unity. 
The resultant complex amplitude of the reflected wave in the duct is the sum of the 

amplitudes of the downgoing waves D(l), D(3), D ( 5 ) .  . . in figure 5. By successive use 
of the formulae (27H30) these amplitudes can be expressed in terms of the amplitude 
of the incident wave D(0). This process is shown in the following table. 

Wave at ground Wave in Formula 
z = 0  barrier used Field 

D(1) (27) E ,  = E,i expi - 2ik 1:' q dz] 

B(3) (28) '"E3 exp(ik 1: q dz) 

B(4), B(5) (29), (30) as for B(2), B(3) with E ,  replaced by E, 
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The sum of the amplitudes of D( l), D(3), D(5) at  the ground is thus a geometrical progres- 
sion which can be summed provided that 

This is satisfied for well locked modes since Im(q) is positive when Re(q) is positive, 
and the path of integration is close to the real z axis. Thus the electric field E ,  of the result- 
ant reflected wave at the ground is 

E, = Eoi exp[ -2ik q dz) {l +exp[ + 2ik J:: q dz) ] - ’. (32) 

This is the same as the alternative formula (21) whose properties have been studied 
in $9 4-6. 

For locked modes the upgoing wave D(0) in the duct can never reach the level zO2 
and be reflected there. If it is followed continuously upwards on the real z axis, its field. 
as given by the WKB expression. 

is subdominant, and drops out discontinuously because of the Stokes phenomenon 
(Stokes 1858). where the Stokes line is crossed at  the point P in figure 4. If it is followed 
on a path which passes on the positive imaginary side of z o l  it goes over continuously 
into the downgoing wave B( 1). 

Suppose now that the frequency is decreased towards fT.  Then the left hand side of 
(31) increases and eventually a frequency fo near , fT  is reached for which it is unity. 
The condition for this is 

Imij;:: q dz) = 0 for f’ = f ”  (34) 

which is the condition that an anti-Stokes line shall run from zol to z o 2 .  For frequencies 
less than fo the geometric progression used to derive (32), and thence (21), is divergent. 

Equation (22) was obtained from (21) by multiplying numerator and denominator by 
exp( - 2ikJ;;; y dz). The same equation would have been obtained if the upgoing wave 
D(0) had first been partially ‘reflected’ and ‘transmitted’ near z o 2 ,  and the sequence of 
multiple reflections had then taken place between zol  and z o 2 ,  This would give a 
convergent geometrical progression whose sum is the curly bracket term in (22). The 
resulting formula has good accuracy when f << j‘;, that is for very leaky modes, as was 
shown in 9: 5. It is then very nearly the same as the simple phase integral formula (18) 
provided that zo  now means z o 2 .  A physical interpretation of this result, similar to that 
used for locked modes as illustrated in figure 5, is possible but less useful, because for 
leaky modes the points zol, zo2  have large imaginary parts. The multiply reflected 
waves have to be considered in complex space and their physical behaviour on the real 
z axis does not play any significant part. 

I t  has been mentioned that the modulus of exp( - 2ikJ::: q dz) reaches a minimum 
value at some frequencyf, << f T .  If ,f .= f ,  andfdecreases, this term increases and tends 
to - 1 asfgoes to zero (S Rotherham private communication). Whenf = f, the point P, 
in figure 4, is at  z = 0. Whenf .= f, it is on the negative real z axis. A wave in the duct 
is completely reflected at z = 0 by the earth’s surface and therefore, for f < f,, it never 
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undergoes the Stokes phenomenon associated with zol. Hence (22) which modifies (18) 
by including the effect of zo should not be used for f < f,. 

Also (12) is invalid at  very low frequencies, because liJoi is very small. Therefore the 
asymptotic series approximation for (8) cannot be used. It should be emphasized that 
(12) agrees well with the numerical integration results for frequencies near the transition, 
and it is, in that sense, ‘exact’ in the transition region. 

I t  is important to note that the amended form (21) or (22) of the phase integral formula 
is the same for both well locked and very leaky modes. There is, apparently, no cor- 
respondingly simple amendment of the formula (1) for ionospheric reflection. Amend- 
ments of (1) have been suggested by Rydbeck (1948) and Heading (1953) (see also Budden 
1961 p 446), but they are more complicated than (21), (22) and the amendments are 
different for the two casesf < f, andf > f,. 

8. Conclusions 

The simple phase integral formula can be used for finding the propagation constant of a 
mode in the troposphere in conditions where ducted propagation is possible provided 
that the frequencyfis not too close to the frequencyf, where the transition from locked 
to leaky modes occurs. For locked modesf >> fT it is necessary to use the branch point 
z,, of q,  whose real part is the smaller, whereas for leaky modes the zo with the greater 
real part must be chosen. There is thus an abrupt transition in the methods for treating 
locked and leaky modes. If the tropospheric medium is lossy, the transition is still 
abrupt. An alternative more accurate form of the phase integral formula can be used 
which does not show any abrupt transition in going from locked to leaky modes but 
its accuracy is poor for frequencies near the transition frequency f T .  It can be used, 
however, for appreciable frequency ranges f, < f << f T  and f >> . fT .  For locked modes, 
this formula can be interpreted in terms of a sequence of multiply reflected waves. For 
leaky modes a similar interpretation can be found but it does not seem to have any clear 
physical significance. 
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